General Specifications

GENERAL DESCRIPTION

AVX offers a wide variety of medically qualified passive components. Medical devices require the utmost reliability with respect to the components incorporated into the designs. Advanced design qualification requirements, in-process controls and requirements and lot acceptance testing are implemented to ensure these components will meet the superior reliability levels of a life supporting application. AVX medical MLCC reliability documents provide an advanced level of designing, manufacturing, testing and qualification that places AVX as the top supplier and industry leader of medically qualified MLCCs.

AVX MQ series of medically qualified ceramic capacitors are available in EIA case sizes ranging from 0402 to 2225, at typical voltage ratings between 4 – 200 Vdc with various termination options including Sn, SnPb solder, and Au.

APPLICATIONS

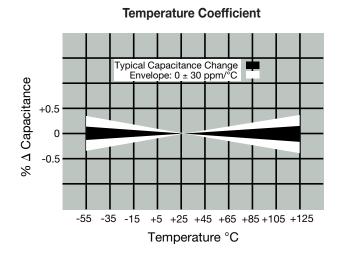
- Implantable cardioverter-defibrillator (ICD)
- Pacemakers
- Neuromodulation

FEATURES

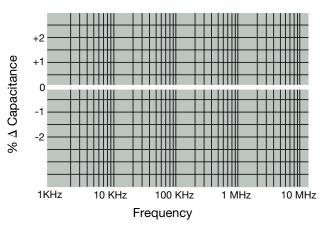
- 0402 to 2225 case sizes
- Voltage range from 4v to 100v
- Capacitance up to 100µF
- Class I & II dielectric materials
- Tight tolerances on Class I dielectric materials
- Various terminations
- Customer specific requirements, screening, & testing

HOW TO ORDER

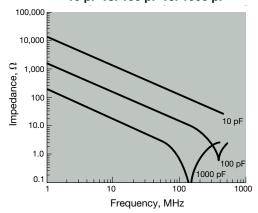
MQ02	Z	A	100	J	G	Ţ	3	A
Size MQ02 = 0402 MQ03 = 0603 MQ05 = 0805 MQ06 = 1206 MQ10 = 1210 MQ12 = 1812 MQ13 = 1825 MQ14 = 2225	Rated Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16v 3 = 25V 5 = 50V 1 = 100V	Dielectric Code A = NP0 (COG) C = X7R Z = X7S D = X5R	Capacitance Code (In pF) (2 significant digits + number of zeros) for values <10pF: letter R denotes decimal point. Example: 68pF = 680 8.2pF = 8R2	Capacitance Tolerance B = ±0.1pF C = ±0.25pF D = ±0.5pF F = ±1% (≥10pF) G = ±2% (≥10pF) J = ±5% K = ±10% M = ±20% N = ±30%	Medical Grade	Termination Finish T = Plated Ni & Sn J = 60/40 Sn/Pb B = 5% min Pb Plated Solder 7 = Gold Plated	Packaging 1 = 7" Reel 2 = 7" Reel (0402 only) 3 = 13" Reel 4 = 13" Reel (0402 only) 6 = Waffle	Special Code A = Standard Contact AVX for others

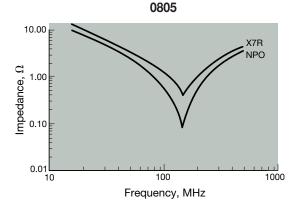

NP0 (C0G) – Capacitance & Voltage Range

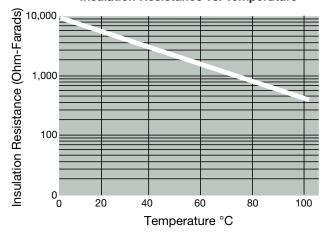
PREFERRED SIZES ARE SHADED

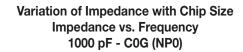

SIZE		0402				0603				08	805			12	06			1210			1812		1812		18	1825		2225	
Soldering	Re	eflow Or	nly		Re	flow/Wa	ave			Reflow	/Wave			Reflow	/Wave		Re	eflow Or	nly	Re	eflow Or	nly	Reflow	w Only	Re	flow On	ly		
Packaging		All Pape	<u> </u>			Embos					bossed			All Em				Embos	<u> </u>		Emboss	,		bossed		Emboss			
(L) Length mm		.00 ± 0.1				.60 ± 0.					± 0.20				± 0.20			.20 ± 0.1			50 ± 0.3		4.50 ±			72 ± 0.2			
··· • (In.)		040 ± 0.0 $.50 \pm 0.1$				063 ± 0.0					± 0.008) ± 0.20				± 0.008) ± 0.20			126 ± 0.0			77 ± 0.0 20 ± 0.2		(0.177 ± 6.40 ±			25 ± 0.0 35 ± 0.2			
(W) Width (in.)	(0.0	020 ± 0.0	004)		(0.0	32 ± 0.0	006)			(0.049 :	± 0.008)			(0.063 :	± 0.008)		(0.0	0.0 ± 800) (80C	(0.1	26 ± 0.0	008)	(0.252 ±	: 0.016)	(0.2	$50 \pm 0.0^{\circ}$	10)		
(t) Terminal mm		.25 ± 0.1			0.	.35 ± 0.					± 0.25				± 0.25			.50 ± 0.1		0.61 ± 0.36 (0.024 ± 0.014)			0.61 ±			64 ± 0.39			
(in.) Maximum mm	(0.0	010 ± 0.0	,00)			(0.037)					± 0.010) .52				± 0.010) 78		(0.0	020 ± 0.0 1.78	510)	(0.024 ± 0.014) 2.79			(0.024 ± 2.1		(0.0	25 ± 0.0 2.79	15)		
Thickness (in.)		(0.022)			<u>``</u>	14 ± 0.0				(0.0	060)			(0.0	070)			(0.070)			(0.110)		(0.1	10)		(0.110)			
WVDC	16	25	50	6.3	16	25	50	100	16	25	50	100	16	25	50	100	25	50	100	25	50	100	50	100	25	50	100		
Cap 0.5 (pF) 1.0 1.2																													
<u>1.5</u> 1.8																						ئار	\geq	\sim	<u></u> W	2	_		
2.2																							\leq	7) [T			
3.3																					-	\sim	<u> </u>	7			_		
3.9 4.7																									4	t			_
5.6 6.8																													
8.2																													
10 12																													
15 18																													
22 27																													
33																													
39 47																													
56 68																													
82																	<u> </u>												
120 150																													
180																													
220 270																													
330																													
390 470																													
560																													
680 820																													
1000																													
1200 1500																													
1800																													
2200 2700																													
3300																													
3900 4700																													
5600																													
6800 8200																													
10000	- 10	0.5			10	0.5	50	100	10	0.5		100		0.5		100	0.5	50	100	05	50	400	50	100	05	50	100		
WVDC SIZE	16	25 0402	50	6.3	16	25 0603	50	100	16	25 08	50 505	100	16	25 12	50 06	100	25	50 1210	100	25	50 1812	100	50 18	100 25	25	50 2225	100		
JILE		0702		I		0003				00				12	00			1210			1012					2225			

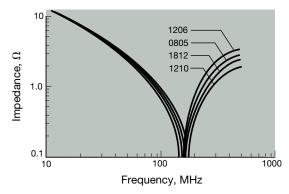
NP0 (C0G) – General Specifications


TYPICAL ELECTRICAL CHARACTERISTICS


 Δ Capacitance vs. Frequency


Variation of Impedance with Cap Value Impedance vs. Frequency 0805 - C0G (NP0) 10 pF vs. 100 pF vs. 1000 pF

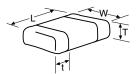



Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - C0G (NP0) vs. X7R

Insulation Resistance vs. Temperature

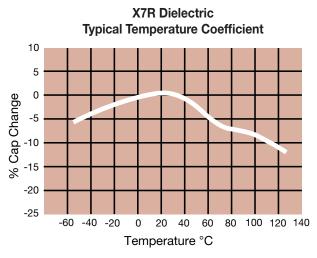
NP0 (C0G) – Specifications & Test Methods

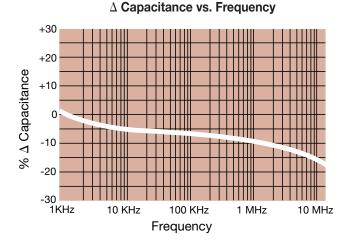
Parame	ter/Test	NP0 Specification Limits	Measuring Conditions								
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber							
Capac	itance	Within specified tolerance	Freq.: 1.0 MHz ± 10	% for cap $\leq 1000 \text{ pF}$							
		<30 pF: Q≥ 400+20 x Cap Value	1.0 kHz ± 10	% for cap > 1000 pF							
	2	≥30 pF: Q≥ 1000	Voltage: 1.0	Vrms ± .2V							
Inculation	Resistance	100,000MΩ or 1000MΩ - μF,	Charge device with								
Insulation	nesistance	whichever is less	120 ± 5 secs @ ro								
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, with ch current limited t	harge and discharge							
	Appearance	No defects	Deflectio	n: 2mm							
Resistance to	Capacitance Variation	$\pm 5\%$ or $\pm .5$ pF, whichever is greater	Test Time: 3	30 seconds 7 1mm/sec							
Flexure Stresses	Q	Meets Initial Values (As Above)									
	Insulation Resistance	≥ Initial Value x 0.3	90 r								
Solde	rability	≥ 85% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.								
	Appearance	No defects, <25% leaching of either end terminal									
Resistance to	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater	MIL-STD-202 / Meth	od 210 / Condition J							
Solder Heat	Q	Meets Initial Values (As Above)	(Reflow Mounting plus 1 Reflow Cycle @ 235°C ± 5°C)								
	Insulation Resistance	Meets Initial Values (As Above)		,							
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes							
	Capacitance Variation	$\leq \pm 3.0\%$ or $\pm .0.3$ pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes							
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes							
ONOCK	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes							
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roo								
	Appearance	No visual defects	_								
	Capacitance Variation	$\leq \pm 3.0\%$ or ± 0.3 pF, whichever is greater	Load in test chamber								
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hours (+48, -0) with twice rated voltage applied. Remove from test chamber and stabilize at room temperature before measuring.								
	Insulation Resistance	\geq Initial Value x 0.3 (See Above)									
	Dielectric Strength	Meets Initial Values (As Above)]								
Load	Appearance	No visual defects	Load in a test chamber set at $85^{\circ}C \pm 2^{\circ}C/85\% \pm 5$ relative humidity for 1000 hours (+48, -0) with rated								
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	voltage applied. Remove from chamber and stabilize at room temperature before measuring.								

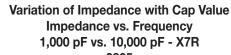


X7R/X7S – General Specifications

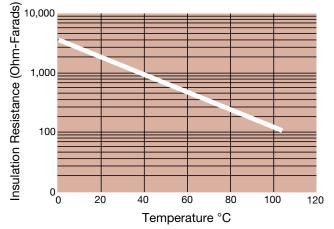
PREFERRED SIZES ARE SHADED

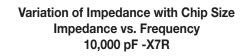

SIZ	Έ.		04	02				06	603					08	05					12	206			1210					18	12	18	25		22	25	
Solde	ring		Reflow	/ Only				Reflow	w/Wave					Reflow	v/Wave					Reflov	v/Wave				Re	eflow O	nly		Reflo	w Only	Reflow	v Only		Reflow	w Only	
Packa	ging		All P						bossed						bossed						bossed					Embos					All Em			All Emb		
(L) Length	mm (in.)		± 1.00 : 00.040))						± 0.15 ± 0.006)						± 0.20 ± 0.008)						± 0.20					.20 ± 0.1 26 ± 0.0				± 0.30	4.50 : (0.177 :			5.72 ±		
	(m.) mm		: 0.50 ±			<u> </u>			± 0.006) ± 0.15			-			± 0.006) ± 0.20			(0.126 ± 0.008) 1.60 ± 0.20							20 ± 0.0			3.20 -		6.40			(0.225 ± 0.010) 6.35 ± 0.25			
(W) Width	(in.)		(0.020 ±	: 0.004)				(0.032	± 0.006)					(0.049	± 0.008))				(0.063 :	± 0.008))			(0.098 ± 0.008)					± 0.008)	(0.252 :	± 0.016)		(0.250 ±	± 0.010)	
(t) Termina	al ^{mm} (in.)		0.25 ± ± 0.010)						± 0.15 037)						± 0.25 ± 0.010)						± 0.25 ± 0.010)			0.50 ± 0.25 (0.020 ± 0.010)						± 0.36	0.61 ± 0.36 (0.024 ± 0.014)			0.64 ± 0.39 (0.025 ± 0.015)		
Maximum	mm		0.010						.94			-			± 0.010/ 52						± 0.010j .78			-	(0.020 ± 0.010) 1.78				2.79		+) (0.024 ± 0.014 2.79			2.7		
Thickness	(in.)		(0.0	22)					± 0.006)						060)						070)					(0.070)			(0.1		(0.1			(0.1	10)	
	WVDC	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50	100	6.3	10	16	25	50	100	10	16	25	50	100	50	100	50	100	16	25	50	100
Cap (pF)	100 150																																			
(pi)	220																																			
	330																																			
	470 680																																			
	1000						<u> </u>	-	-			-			<u> </u>									-	<u> </u>				<u> </u>	<u> </u>	-			\square		
	1500																																			
	2200							<u> </u>																												
	3300 4700																																			
	6800																																			
Cap	0.010																																			
	0.015 0.022																																			
	0.022							-																												
	0.047																																			
	0.068																																			
	0.10 0.15																																			
	0.22																																			
	0.33																																			
	0.47																																			
	0.68																																	\vdash		<u> </u>
	1.5																																			
	2.2																														\square		 			
	3.3 4.7																																			
	4.7																																			
	WVDC	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50	100	6.3	10	16	25	50	100	10	16	25	50	100	50	100	50	100	16	25	50	100
SIZ	E.		04	02				06	603					08	05					12	206		1210				18	812 1825		25		22	25			

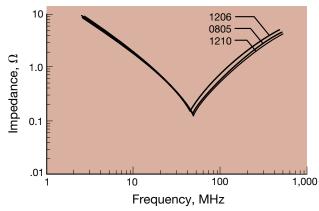

These values are produced with X7S temperature coefficient code

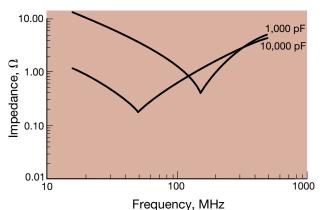


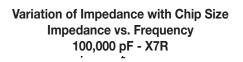
X7R/X7S – General Specifications

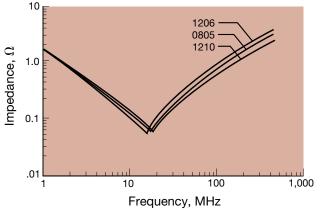

TYPICAL ELECTRICAL CHARACTERISTICS



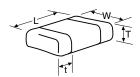



Insulation Resistance vs. Temperature

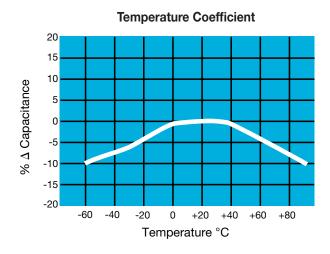




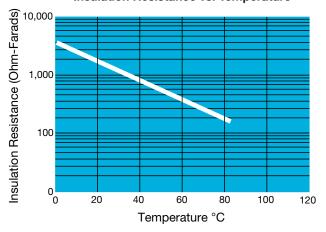
0805


X7R/X7S – Specifications & Test Methods

Parame	ter/Test	NP0 Specification Limits	Measuring Conditions								
Operating Tem		-55°C to +125°C	Temperature C								
Capac		Within specified tolerance		3							
Dissipatio	on Factor	\leq 2.5% for \geq 50V DC rating \leq 3.0% for 25V & 35V DC rating \leq 12.5% for 16V DC rating and lower	Frequency: 1. Voltage: 1.0\								
		Contact factory for DF by PN 100,000MΩ or 1000MΩ - μF,	Chargo dovico wit	h rated voltage for							
Insulation I	Resistance	whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity								
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, with ch current limited t	0% of rated voltage for harge and discharge							
	Appearance	No defects	Deflectio	n: 2mm							
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	30 seconds 1mm/sec							
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)									
	Insulation Resistance	≥ Initial Value x 0.3	90 r								
Solder	rability	≥ 85% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.								
	Appearance	No defects, <25% leaching of either end terminal									
Resistance to	Capacitance Variation	≤ ±7.5%	MIL-STD-202 / Method 210 / Condition								
Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	(Reflow Mounting p @ 235°C	lus 1 Reflow Cycle							
	Insulation Resistance	Meets Initial Values (As Above)		, , , , , , , , , , , , , , , , , , , ,							
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes							
	Capacitance Variation	$\leq \pm 7.5\%$	Step 2: Room Temp	≤ 3 minutes							
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes							
SHOCK	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes							
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roo								
	Appearance	No visual defects									
	Capacitance Variation	≤ ±12.5%	Load in test chamber for 1000 hou								
Load Life	Dissipation Factor	\leq initial value x 2.0 (see above)	with twice rated								
	Insulation Resistance	\geq Initial Value x 0.3 (See Above)	Remove from test chamk temperature bef								
	Dielectric Strength	Meets Initial Values (As Above)		ore measuring.							
Loca	Appearance	No visual defects	Load in a test chamber set at $85^{\circ}C \pm 2^{\circ}C/85\% \pm 5^{\circ}$ relative humidity for 1000 hours (+48, -0) with rate								
Load Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	voltage applied. Remove from chamber and stabilize at room temperature before measuring.								


X5R – Capacitance & Voltage Range

PREFERRED SIZES ARE SHADED


SIZE				04	02					06	03				(0805	5				1200	6			1210						18	12		
Solderin	ng		I	Reflov	v Onl	y			F	Reflow	/Wav	е			Ref	low/W	/ave			Ref	low/W	lave			F	Reflov	v Onl	V			Reflow	v Only	/	
Packagi	ng			All P	aper				A	ll Eml	bosse	d			All E	mbos	ssed			All E	Embo	ssed			A	ll Emb	oosse	d		A	ll Eml	bosse	d	
	mm			1.00 =					1.60 ± 0.15						2.01 ± 0.20 3.20 ± 0.20 (0.079 ± 0.008) (0.126 ± 0.008)							3.20 ± 0.20							4.50 ± 0.30					
	(in.)		(0.040 =				(0.063 ± 0.006)								$79 \pm 0.25 \pm 0.$			(0.126 ± 0.008) (0.126 ± 0.008) 1.60 ± 0.20 2.50 ± 0.20							(0.126 ± 0.008)						(0.177 ± 0.012) 3.20 ± 0.20		
	mm (in.)		((: 0.50 : 0.020					0.81 ± 0.15 (0.032 ± 0.006)						25 ± 0. 49 ± 0.					60 ± 0 63 ± 0					e 02.50 E 800.0				((± 0.20 ± 0.008	3)		
-	mm			0.25 -	± 0.15	,			0.35 ± 0.15						$50 \pm 0.$				0.	50 ± 0	.25				0.50 ±		- ,		L `		± 0.36	,		
0	(in.)		(0.010 =		6)					037)				(0.02	$20 \pm 0.$	010)			(0.0	20 ± 0	.010)				(0.020 ±						± 0.014)		
	mm (in.)			0. (0.0	56				((94 ± 0.006	2)				1.52 (0.060)					1.78 (0.070	\ \				1.1 (0.0					2. (0.1			
W		4	6.3	10	16	25	50	4	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50	4	6.3	10	16	25	50	6.3	10	25	50	
).01	7	0.0	10	10	20	00	-	0.0	10	10	20	00	0.0	10	10	20	00	0.0	10	10	20	00	7	0.0	10	10	20	50	0.0	10	20		
	015						1																											
	022																																	
	033																																	
	047																																	
	068 0.1												-																			<u> </u>		
	0.15																																	
).22																																	
0).33																																	
).47																																	
	.68																			<u> </u>												\vdash		
	1.0 1.5																																	
	2.2																																	
	3.3																																	
	4.7																																	
	10																																	
	22																																	
	47 100																																	
W		4	6.3	10	16	25	50	4	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50	4 6.3 10 16 25 50			50	6.3	10	25	50			
SIZE	-	-+	0.0	04		20	- 50	+	0.0	06		20	_ 00	0.0		080		- 50	0.0		1206		_ 00	1210			50	0.0		12				
SIZE				04	02					00	03					000	,			1200 1210				1210					10	12				

TYPICAL ELECTRICAL CHARACTERISTICS

Insulation Resistance vs. Temperature

X5R – Specifications & Test Methods

Parame	ter/Test	X5R Specification Limits	Measuring Conditions							
Operating Tem	perature Range	-55°C to +85°C	Temperature Cycle Chamber							
Capac		Within specified tolerance								
Dissipatio	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V For Cap > 10 μF, 0.5Vrms @ 120Hz							
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity							
Dielectric	Strength	No breakdown or visual defects	Charge device with 150 1-5 seconds, w/charge limited to 50	0% of rated voltage for and discharge current						
	Appearance	No defects	Deflectio							
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3							
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)								
	Insulation Resistance	≥ Initial Value x 0.3	90 r							
Solder	rability	≥ 85% of each terminal should be covered with fresh solder	Dip device in eutectic for $5.0 \pm 0.$							
	Appearance	No defects, <25% leaching of either end terminal	-							
	Capacitance Variation	≤ ±7.5%	- MIL-STD-202 / Method 210 / Condition							
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	(Reflow Mounting p @ 235°C	lus 1 Reflow Cycle						
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)		,						
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes						
	Capacitance Variation	$\leq \pm 7.5\%$	Step 2: Room Temp	≤ 3 minutes						
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes						
SHOCK	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes						
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles ar 24 ± 2 hours at room							
	Appearance	No visual defects	_							
	Capacitance Variation	≤ ±12.5%	Load in test chambe for 1000 hou							
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	with twice rated							
	Insulation Resistance	\geq Initial Value x 0.3 (See Above)	Remove from test chamber and stabilize at roor							
	Dielectric Strength	Meets Initial Values (As Above)	temperature bef	ore measuring.						
	Appearance	No visual defects	Load in a test chamber set at $85^{\circ}C \pm 2^{\circ}C/85\% \pm 5^{\circ}$							
Load Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	 relative humidity for 1000 hours (+48, -0) with rated voltage applied. Remove from chamber and stabilize at room temperature before measuring. 							